
Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2741

QoS-Aware Data Replication in Hadoop

Distributed File System
Dr. Sunita Varma

Department of ComputerTechnology and Application

S. G. S. I. T. S.

Indore, (M. P.), India

sunita.varma19@gmail.com

Ms. Gopi Khatri

Department of Computer Engineering

S. G. S. I. T. S

Indore, (M. P.), India

 gopikhatri149@gmail.com

--ABSTRACT---

Cloud computing provides services using virtualized resources through Internet on pay per use basis. These

services are delivered from millions of data centers which are connected with each other. Cloud system consists of

commodity machines. The client data is stored on these machines. Probability of hardware failure and data

corruption of these low performance machines are high. For fault tolerance and improving the reliability of the

cloud system the data is replicated to multiple systems.

Hadoop Distributed File System (HDFS) is used for distributed storage in cloud system. The data is stored in the

form of fixed-size blocks i.e. 64MB. The data stored in HDFS is replicated on multiple systems for improving the

reliability of the cloud system. Block replica placement algorithm is used in HDFS for replicating the data block.

In this algorithm, QoS parameter for replicating the data block is not specified between client and service

provider in the form of service level agreement.

In this paper, an algorithm QoS-Aware Data Replication in HDFS is suggested which considers the QoS

parameter for replicating the data block. The QoS parameter considered is expected replication time of

application. The block of data is replicated to remote rack DataNodes which satisfies replication time requirement

of application. This algorithm reduces the replication cost as compared to existing algorithm thus, improving the

reliability and performance of system.
Keywords-Cloud computing; quality of service; data replication; Hadoop distributed file system; replication cost.

--- ---

Date of Submission: July 09, 2015 Date of Acceptance: Aug 12, 2015

--- ---------------------

I. INTRODUCTION

Computing is being transformed to a model consisting of

services that are commoditized and delivered in a manner

similar to utilities such as water, electricity, gas and

telephony. In such a model, users access services based on

their requirements regardless of where they are hosted.

Cloud computing is the most recent paradigm promising to

turn the vision of computing utilities into realities. Cloud

computing is a technological advancement that focuses on

the way in which the user can design computing system,

develop applications and utilizing existing services for

building software. It is based on concept of dynamic

provisioning which is applied not only to services but also

to compute capability, storage, networking, and

information technology infrastructure in general.

Resources are made available through the Internet and on

a pay-per-use basis from cloud computing vendors. Today,

anyone with a credit card can subscribe to cloud services,

deploy and configure servers for an application in hours,

growing and shrinking the infrastructure serving its

application to the demand and paying only for the time

these resources have been used.

Cloud computing system consists of millions of data

centers which are located throughout the world. The cloud

services are provided by these data centers. Moreover,

these data centers are capable of storing and performing

large amount of data which are generated by data intensive

applications. The key challenge of cloud computing

system is to store and process large amount of data.

The Apache Hadoop is a framework for cloud

computing system. It allows distributed processing of

large amount of data across cluster of computers. One of

the module of Hadoop is Hadoop Distributed File System

(HDFS) which organizes files and stores their data on

distributed computing. HDFS has a master/slave

architecture containing a single NameNode as a master

and number of DataNodes as workers (Slaves). To store

file in this architecture, HDFS splits the file into fixed size

blocks of 64MB and stores them on DataNodes. The

mapping of blocks to DataNodes is stored on NameNode.

The NameNode also manages the files system’s metadata
and namespace.

Hadoop framework runs on millions of commodity

machines. Hence, the probability of failure of DataNodes,

network link and storage media is high which makes the

data unreliable. For proving reliability of data in HDFS, it

replicates the data on multiple DataNodes. The block

replica placement algorithm is used for selecting the

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2742

DataNodes in which random remote DataNodes are

selected.

In this paper the quality of service (QoS) parameter is

considered for replicating the data on DataNodes. The

QoS parameter considered for data replication is

replication time. The block of data is stored on those

DataNodes which satisfies the minimum replication time

of the client application. This algorithm reduces the

replication cost which results in improved reliability and

performance of system.

The rest of paper is organized as follows. Section II

describes the system overview. Section III overviews the

related work. Section IV presents the data replication in

HDFS. Section V evaluates the performance of proposed

algorithm. Finally Section VI concludes the paper.

II. SYSTEM OVERVIEW

Several distributed file system (DFS) like Ceph, Google

File System (GFS), gfarm, GlusterFS, OpenAFS,

XtreemFS, MooseFS and Lustre are being developed [1].

Hadoop Distributed File system(HDFS) is one of popular

DFS which is used by more than one hundred organization

include yahoo, Adobe, A9.com - Amazon, Able Grape,

BabaCar, Cloudspace, Detektei Berlin, EBay, Facebook,

FOX Audience Network and so on[2]. It is inspired by

GFS that organizes files and stores their data on

distributed computing system.

A. Overview of Hadoop Architecture

It consists of single NameNode and multiple

DataNodes. NameNode manages the file system’s
metadata and namespace. In such systems, the namespace

is the area maintaining the metadata, and metadata refers

to all the information stored by a file system that is needed

for overall management of all files i.e. permission,

modification and access time of files/directories. The file

content is split into blocks and each block of file is

replicated at different DataNodes. Hence, NameNode

maintains the namespace tree and the mapping of file

blocks to DataNodes (physical location of file data). Each

DataNode is responsible for storing and retrieving its file

block. DataNodes are deployed within a rack as shown in

fig. 1. Each DataNode has associated rack number to

represent in which rack it is located [3].
Fig. 1: Architecture of HDFS

B. HDFS Fault Tolerance

One of the aspect of HDFS is its fault tolerance

characteristics. Since Hadoop is designed to be on low-

cost hardware by default, a hardware failure in this system

is considered to be common rather than exception.

Therefore, Hadoop considers the following issues to fulfill

reliability requirement of the file system [4]

 1)Block Replication: To reliably store data in HDFS,

file blocks are replicated in this system. In other words,

HDFS stores a file as a set of blocks and each block is

replicated and distributed across the whole cluster. The

replication factor is set by the user and is three by default.

 2)Replica Placement: The placement of the replica is

another factor to fulfill the desired fault tolerance in

HDFS. Although storing replicas on different DataNodes

located in different racks across the whole cluster provides

more reliability, it is sometimes ignored as the cost of

communication between two DataNodes in different racks

is relatively high in comparison with that of different

DataNodes located in the same racks. Therefore,

sometimes HDFS compromises its reliability to achieve

lower communication costs. For example, for the default

replication factor of three, HDFS stores one replica in the

same DataNode from where HDFS client sends a write

request, one replica on a different DataNode but in same

rack, and one replica on a different DataNode in different

rack to provide three copies of data[5]

 3)Heartbeat and Blockreport messages: Heartbeat and

Blockreport messages are periodic send to the NameNode

by each DataNodes in cluster. Receipt of a

Heartbeatmessage implies that the DataNode is

functioning properly. The default heartbeat message

interval is three second. If the NameNode does not receive

a heartbeat message from a DataNode in ten minutes the

NameNode considers DataNode to be out of service and

the block replicas hosted by that DataNode to be

unavailable. While, each Blockreport message contain a

list of all blocks on a DataNode[5]. The NameNode

receives such messages because it is the sole decision

maker of all replicas in the system.

1) HDFS High-Throughput Access to Large Data Sets

(Files):

Because HDFS is primarily designed for batch

processing rather than interactive processing, data access

throughput in HDFS is more important than latency. Also,

because applications run on HDSF typically have large

data sets, individual files are broken into large blocks (e.g.

64 MB) to allow HDFS to decrease the amount of

metadata storage required per file. This provides two

advantages: The list of blocks per file will shrink as the

size of individual blocks increases, and by keeping large

amount of data sequentially within a blocks, HDFS

provides fast streaming reads of data.

2) HDFS Operation

The control flow of HDFS operations such as write

and read can properly highlight roles of the NameNode

and DataNodes in the managing operations. In this section,

the control flow of the main operations of HDFS on files is

further described to manifest the interaction between

HDFS client, the NameNode, and the DataNodes in such

system[6].

1) Reading a file: To read a file in HDFS, a user

sends an “open” request to the NameNode to get the

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2743

location of file blocks. For each file block, the NameNode

returns the address of a set of DataNodes containing

replica information for the requested file. The number of

addresses depends on the number of block replicas. Upon

receiving such information, the user calls the read function

to connect to the closest DataNode containing the first

block of the file. After the first block is streamed from the

respective DataNode to the user, the established

connection is terminated and the same process is repeated

for all blocks of the requested file until the whole file is

streamed to the user.

2) Writing to a file: To write a file in HDFS, a user

sends a “create” request to the NameNode to create a new
file in the file system namespace. If the file does not exist,

the NameNode notifies the user and allows him to start

writing data to the file by calling the write function. The

block of the file is written to an internal queue termed the

data queue while a data streamer monitors its writing into

a DataNode. Since each file block needs to be replicated

by a predefined factor, the data streamer first sends a

request to the NameNode to get a list of suitable

DataNodes to store replicas of the first blocks.

The Streamer then stores the block in the first

allocated DataNode. Afterward, the block is forwarded to

the second DataNode by the first DataNode. The process

continues until all allocated DataNodes receive a replica of

the first block from the previous DataNode. Once this

replication process is finalized, the same process starts for

the second block and continues until all blocks of the file

are stored and replicated on the file system.

III. RELATED WORK

In [7],Gao and Diao discussed the problem of

maintaining the consistence of data replication in cloud

computing system. The Author used Lazy update approach

to separate the process of data replica updating and data

access in cloud which improve the throughput of the

information, data service and reduce response time.

NameNode is single point of failure (SPOF) in

Hadoop. For this reason studies have been undertaken to

make the NameNode resilient to failure. Hadoop provided

two mechanisms [8], the first way was to back up the files

that make up the persistent state of file system metadata;

second was to run secondary NameNode to periodically

merge the namespace image with the edit log to prevent

the edit log from becoming too large.

HDFS federation [9] allowed a cluster to scale by

adding NameNodes, each of which managed a portion of

the filesystem namespace. The DataNodes were used as

common storage for blocks by all the NameNodes. Each

DataNode registered with all the NameNodes in the

cluster. NameNodes were federated, that is, the

NameNodes were independent and didn’t require
coordination with each other. Hence, failure of one

NameNode did not affect the availability of the

namespaces

A subproject of Hadoop, named Zookeeper [10],

supported replication among a set of servers and provided

a coordination mechanism for leader election among the

servers, but it focused on providing a coordination service

for distributed applications instead of a high availability

solutionmanaged by other NameNodes.

Wang et al. proposed a metadata replication based to

enable Hadoop high availability by removing SPOF[11].

This solution involved three phases: initialization phase,

replication phase and failover phase; and also presented

several unique features for improving availability of

Hadoop e.g. reconfigurable synchronization mode and

corresponding adaptive decision method.

QoS-aware data replication problem has been studies

in the literature. It has been studied in content distribution

system [12]-[13]. Tang and Xu[12] were suggested two

heuristic algorithms called l-greedy insert and l-greedy

delete. l-greedy insert algorithm was started with an empty

replication strategy and continued to insert replicas into

replication strategy until all QoS requirement were

satisfied. l-greedy delete algorithm was started from

complete replication strategy and continued to remove

replicas from replication strategy provided that no QoS

requirement was violated. In [13] Wang et al. were

proposed another heuristic algorithm called greedy cover

that determined the position of replicas in order to satisfy

the quality requirements imposed by data requests. The

cover set c(u) of a server u is the set of servers that were

within the QoS requirement q(u) from u.

QoS-aware data replication problem has been

discussed in data grid [14]. This paper proposed a dynamic

placement strategy named Least Value Replacement

(LVR), which was based on the future value prediction

method. The LVR framework could automatically decide

which replica file to be deleted whenever the grid site was

full. Replication and deletion of file were based on data-

access frequency and free space on storage elements. It

also added some effective factor for describing condition

replica prediction probabilities.

In [15], Fu et al. addressed QoS-aware data

replication problem in a tree based mobile grid

environments to meet the QoS requirements of all mobile

users and load balancing of replicas. Authors proposed

two-step solution: the first step was a bottom-up dynamic

programming approach for placing replicas to satisfy the

QoS requirements of mobile users and workload constraint

of replicas; then, a binary search based algorithm was used

to finish the k replica placement problem in mobile grid

environments.

Ref.[16] explored QoS-aware distributed replica

placement in hierarchical data grids by introducing a new

highly distributed and decentralized replica placement

algorithm that determined locations for placing replicas to

meet the QoS requirement while minimizing overall

replication cost and maximizing QoS satisfaction for a

given traffic pattern.

There were also other algorithms that provide QoS-

aware placement for systems such as distributed and

mobile databases; and P2P networks. In general, the

characteristics of these algorithms make them

inappropriate for use in our target environment and they

are not discussed in this paper.

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2744

Data replication was done to make sure the

availability of data in case of loss of original copy of data

due to failure of network link or hardware in system.

Block replica placement technique[17] was used in HDFS,

to replicate the data, but they didn't consider Quality of

service (QoS) requirement of applications. Also, QoS-

aware data replication problem was addressed in various

areas including grid mobile environment using different

techniques but, they ignored replication cost as a QoS

parameter.

In this paper, we proposed a QoS-aware Data

replication in HDFS which considered replication cost as a

QoS parameter and reduced the replication cost of system

and improve reliability of system.

IV. DATA REPLCATION IN HDFS

A. Block Replica Placement Policy

HDFS consists of a single NameNode and a set of

DataNodes. The NameNode and DataNodes are deployed

within a number of racks. The NameNode mainly manages

the file system namespace and the locations of data blocks

(the mapping of data blocks to DataNodes). Applications

are executed in DataNodes. When an application would

like to write or read a file, it acts as HDFS client. As the

client writes file, this file is split into data blocks of size

64MB by DFSOutputStream. These blocks is written to

data queue. The data queue is consumed by DataStreamer.

Then DataStreamer sends write request to NameNode.

After receiving write request, NameNode finds the

location of target DataNodes by block replica placement

strategy, where block of data will be hosted. DataNode

from where DataStreamer requests to NameNode is called

Local DataNode. Rack of Local DataNode is called Local

rack whereas, racks other than Local rack are called

remote racks. Moreover, DataNodes that are in remote

racks or in different (remote) rack than Local rack are

called remote rack DataNodes.

In block replica placement mechanism, location of

target DataNodes are return by NameNode to client for

storing data block. Number of target DataNodes depend on

replication factor. By default replication factor in HDFS is

three, therefore location of three target DataNodes are

returned by NameNode. First target DataNode is the local

DataNode. In additional to, second and third target

DataNodes are remote rack DataNodes. Location of these

three target DataNodes are returned to client by

NameNode. Then, the list of target DataNodes forms a

pipeline. The DataStreamer streams the block to the first

target DataNode in the pipeline, which stores the block

and forwards it to the second target DataNode in the

pipeline. Similarly, the second target DataNode stores the

block and forwards it to the third (and last) target

DataNode in the pipeline as shown in fig. 2.

Fig. 2:Interactions among the Client, the NameNode and the DataNodes

1) Flow chart of Block Replica Placement Policy:

Flow chart of block replica placement mechanism in

HDFS is shown in fig. 3. The methods used in block

replica placement strategy are as follow:

a) getAdditionalBlock() method:

 This method is used to obtain an additional block for the

file (which is being written-to). It returns an array that

consists of the block, plus a set of machines. It returns an

empty array if NameNode wants the client to "try again

later". This method is described in FSNameSystem.java

file. This file is in org.apache.hadoop.hdfs.server.name

node package.

Fig 3. Flow chart of block replica placement in HDFS

b) chooseTarget() method: This method is responsible

for choosing the ‘rf’ number of targets DataNodes for
placing block replicas, where ‘rf’ is the number of replica

of block. By default it is three. It returns an array that

consists of target DataNodes. These target DataNodes are

chosen according to replica placement strategy. This

method is described in BlockPlacementPolicyDefault.java

file. This file is in org.apache.hadoop.hdfs.server.name

node package.

c) chooseLocalNode() method: This method chooses

local machine as the target DataNode. If local machine is

not available, choose a DataNode on the same rack. It

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2745

returns the chosen DataNode. This method is also

described in BlockPlacementPolicyDefault.java file.

d) chooseRemoteRack() method: This method chooses

DataNodes from the remote racks. If not enough nodes are

available, choose the remaining ones from the local rack.

This method is also described in

BlockPlacementPolicyDefault.java file.

e) chooseRandom() method: This method randomly

chooses target from DataNodes. This method is also

described BlockPlacementPolicyDefault.java file.

When DataStreamer sends write request to

NameNode, getAdditionalBlock() method is called to

obtain an additional block ‘b’ of file ‘src’. As shown in
fig. 3, this getAdditionalBlock() method calls

chooseTarget() method, for choosing ‘rf’ target DataNodes
from all available DataNodes based on block replica

placement strategy.

Here ‘targetNodes’ is variable which contains location

of target DataNodes where block will be stored. If number

of location of target DataNodes in ‘targetNodes’ is zero,
chooseLocalNode() method is called. This method selects

the local machine as a target DataNode and stored location

of local machine in ‘targetNodes’. If number of location of

target DataNodes stored in ‘targetNodes’ are less than ‘rf’,
chooseRemoteRack() method is called, which in turn calls

chooseRandomNode() method that randomly selects a

DataNode from remote rack and stored in ‘targetNodes’.
chooseRemoteRack() method is called till number of

location of target DataNodes in ‘targetNodes’ is equal to
‘rf’. If number of location of target DataNodes in

‘targetNodes’ is equal to ‘rf’, ‘targetNodes’ is returned by
chooseTarget() method to getAdditionalBlock(). Then

target DataNodes organizes a pipeline and

DataStreamer streams the block to the first target

DataNode, second target DataNode and third target

DataNode one by one to write in the disk of target

DataNodes.

2) Algorithm of Block Replica Placement Policy:

Table 1 lists the notations used in algorithms. The

pseudo code of Block Replica Placement algorithm is

given in fig. 4, whose operations are elaborated as follows:

Block replica placement algorithm takes ‘src’,
‘replicationFactor’ ‘clientNode’ and ‘blockSize’ as input.
Output of this algorithm is the ‘result’, which holds the
locations of target DataNodes where block will be hosted

as per block replica placement mechanism.

As DataStreamer sends write request of file ‘src’ to
NameNode for location of target DataNodes, NameNode

calls getAdditionalBlock() method to obtain an additional

block of the file ‘src’ where, size of block is ‘blockSize’.
This method calls chooseTarget() method which selects

‘replicationFactor’ target DataNodes for placing the block

of file ‘src'. The selection of target DataNodes are based
on block replica placement strategy.

Table 1

Notation used in Block Replica Placement Algorithm

In block replica placement algorithm, chooseTarget()

method checks the result variable and finds number of

target DataNodes in ‘result’ variable as given in step1. If
‘result’ variable doesn’t contain the location of DataNode,

it calls chooseLocalNode() method in step2. This method

selects the local DataNode as a target DataNode and stores

address of local DataNode in ‘result’ variable in step 3. If
number of target DataNodes in ‘result’ variable is less

than ‘replicationFactor’, it calls chooseRemoteRack()

Fig. 4. The block replica placement algorithm

method which in turn calls chooseRandomNode() method

that randomly selects the remote rack DataNode as a target

DataNodes.It then stores the address of this target

DataNode in ‘result’ variable as given in step 4.
chooseremoteRack() method is called till number of target

DataNodes in ‘result’ variable is equal to ‘replication

Factor’. As number of target DataNodes in ‘result’
variable is equal to ‘replicationFactor’, result is returned

by chooseTarget() method in step 6. In this way, ‘result’
variable contains address of target DataNodes, where

blocks of files ‘src’ has to be stored.

3) Example of Block Replica Placement Policy:A

small scale HDFS is depicted in fig. 5. The HDFS consists

of NameNode ‘NN’; SecondaryNameNode ‘SN’; six

DataNodes ‘D1’ ‘D2’ ‘D3’ ‘D4’ ‘D5’ and‘D6’; and three

racks ‘R1’ ‘R2’ and ‘R3’. Two DataNodes are deployed

with in each rack. ‘D1’ and ‘D2’ are in ‘R1’, ‘D3’ and
‘D4’ are in ‘R2’ and ‘D5’ and ‘D6’ are in ‘R3’. Consider,

applications ‘A1’ ‘A2’ and ‘A3’ are executing on ‘D1’
‘D2’ and ‘D3’ respectively. Replication factor is

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2746

three.Suppose ‘A1’ issues a write request to NameNode.

After receiving write request NameNode finds target

DataNodes by block replica placement algorithm. First

target DataNode is ‘D1’ because ‘D1’ is local DataNode.
Other target DataNodes are ‘D3’ and ‘D4’ or ‘D5’ and
‘D6’ because these DataNodes are in different racks.

Hence either address of ‘D1’, ‘D3’ and ‘D4’ or address of
‘D1’, ‘D5’ and ‘D6’ DataNodes are returned by

NameNode to ‘D1’ client DataNode.

Similarly, the application ‘A2’ issues write request to
NameNode. Address of ‘D2’, ‘D3’ and ‘D4’ or address of
‘D2’, ‘D5’ and ‘D6’ DataNodes are returned by
NameNode to ‘D2’ client DataNode.

Similarly, the application ‘A3’ issues write request to
NameNode. Address of ‘D3’, ‘D5’ and ‘D6’ or address of
‘D3’, ‘D1’ and ‘D2’ DataNodes are returned by
NameNode to ‘D3’ client DataNode.

B. QoS-Aware Data Replica Placement Policy:

When an application would like to write a data block, the

DataStreamer would issue a write request for the data

block to the NameNode. The QoS parameter considered

in QoS-aware data replication policy is replication time.

Fig.5. A small scale Hadoop distributed file system

example

The information about expected replication time

requirement of the requested application is also

attachedwith the write request.This write request is called

QoS-aware write request. Suppose ‘DRi’ is requested
DataNode on whichrequested application is run. When

processing a QoS-aware write request from the requested

DataNode ‘DRi’ by the NameNode, it requires to find the

corresponding target DataNodes that satisfy the

replication time requirement of the requesting application

running on ‘DRi’.Notation used in QoS-aware Data

Replication policy is given in table 2.

TABLE 2

Notation used in QoS-aware Data Replication policy

Let the replication time requirement of the requested

application running on the requested DataNode ‘DRi’ is
T(DRi) time units. If the DataNode ‘DTj’ is one of the
target DataNode of ‘DRi’, it needs to meet the following
two conditions:

 The DataNodes ‘DRi’ and ‘DRj’ cannot be
located within the same rack. This condition is for

considering the possible rack failure.

R(DRi)!= R(DTj) (1)

Where, R is the function to determine in which rack a

DataNode is located.

 The replication time of data block Treplication(DRi,

TDj) from DRi to DTj needs to meet the T(DRi) constraint.

Treplication(DRi, DTj) ≤ T(DRi) (2)

The replication cost is the total replication time taken by

all the requested DataNodes to store their respectively data

block replica.

1) Assumptions for QoS-Aware Data Replica

Placement Policy:

When an application wants to write file,

corresponding data blocks are written to data queue. After

that DataStreamer sends a QoS-aware write request to

NameNode. NameNode is replied by giving address of

DataNodes where block will be hosted. NameNode finds

target DataNodes based on QoS-aware data replication

algorithm. Before describing the details of QoS-aware

data replication algorithm, the following assumptions are

made:

a) It is assumed that only one application runs in

DataNode during a given time interval. Only one file is

opened to execute the operation by application.

b) A file is divided into number of blocks. Size of

each of block is 64MB.

c) Each data block by default has three replicas.

QoS-aware data replication algorithm also by default has

three replicas of block including original block.

d) NameNode has a table having replication time

between any two DataNodes. The replication time

between i
th

 DataNode and j
th

 DataNode is calculated as:

Treplication(Di, Dj) = Tdisk(Dj)+ Tcom(Di, Dj) (3)

Where, Treplication(Di, Dj) is the time to store a data block

replica from Di to Dj, Di is i
th

 DataNode, Dj is j
th

DataNode, Tcom(Di, Dj) is network communication time for

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2747

transmitting a data block replica from Di to Dj and Tdisk(Dj)

is disk storage time for storing a data block to the disk of

DataNode Dj.

e) The replication time is the QoS parameter

considered in QoS-aware data replication algorithm. The

requirement of data replication time of an application can

be specified in the service level agreements (SLA). The

replication time requirement of application is passed as

parameter with the QoS-aware write request to

NameNode.

f) In this mechanism, one DataNode cannot have

more than one replica of same data block and one rack

cannot have more than two replicas of the same data

block.

2) Flow chart of QoS-Aware Data Replica

Placement Policy:

Flow chart of QoS-aware Data replica placement

mechanism in HDFS is shown in fig 6. The methods used

in QoS-aware Data replica placement strategy are as

follow:

chooseTarget() method: This method is responsible for

selecting the targets DataNodes for placing block replicas.

Where number of target DataNodes is equal to ‘rf’ and 'rf’
is the number of replica of block. It returns an array that

contains target DataNodes. These target DataNodes are

chosen according to QoS-aware data replica placement

strategy. This method is described

inBlockPlacementPolicyDefault.java file. This file is in

org.apache.hadoop.hdfs.server.namenode package.

Fig 6. Flow chart of Qos-aware data replication in

HDFS

a) getQosNode() method: This method is used for

selecting a DataNode as a target DataNode among remote

DataNodes which satisfy the replication time requirement

of requesting application based on operation(2).It returns a

‘QoSNode’. Where ‘QoSNode’ is a DataNode among all
the remote rack DataNodes which satisfy(2). Replication

time of ‘QoSNode’from requested DataNode is minimum

among all satisfy DataNodes. This method is called by

chooseRemoterack() method by passing remote

DataNodes as a argument. getQoSNode() method is

described in QoS.java file. This QoS.java file is in

org.apache.hadoop.hdfs.server.namenode package.

b) setOfQosCheckNode() method:It may be possible

number of DataNodes which satisfy the replication time

requirement of requesting application based on (1) and (2)

are greater than one.This method is responsible to find all

DataNodes, which satisfy the replication time requirement

of requesting application i.e. Treplication(DRi, Dj) ≤ T(Di).

This method is also described in QoS.java file.

c) minimumQosNode() method: This method is used

for selecting a DataNode which has minimum replication

time among all remote DataNodes which satisfy the

replication time requirement of application. This method is

described in QoS.java file.

d) minReplicationTime() method: This method is

used for selecting a DataNode as a target DataNode among

remote DataNodes which doesn’t satisfy replication time

requirement of requesting application based on (2) but has

minimum replication time among all remote rack

DataNodes. If no one DataNode is selected by

getQoSNode() method,this method is called by

chooseRandom() method. minReplicationTime() method

is described in QoS.java file. This QoS.java file is in

org.apache.hadoop.hdfs.server.namenode package.

As client sends QoS-aware write request to

NameNode, getAdditionalBlock() method is called to

obtain address of target DataNodes for storing an

additional block ‘b’ of file ‘src’. As shown in fig. 6, this

getAdditionalBlock() method calls chooseTarget()

method, for selecting target DataNodes from all available

DataNodes based on QoS-aware replica placement

strategy, where number of target DataNodes is equal to ‘rf’
and ‘rf’ is replication factor. If number of target

DataNodes in ‘targetNodes’ are zero, chooseLocalNode()

method is called. This method selects the local DataNode

as a target DataNode. Address of this local DataNode is

stored in ‘targetNodes’. If number of selected target
DataNodes in ‘targetNodes’ are less than ‘rf’,
chooseRemoteRack() method is called to find all remote

rack DataNodes based on (1). After finding all remote rack

DataNodes getQosNode() method is called, which in turn

calls setofQosCheckNode() method to select all the remote

rack DataNodes which meets the replication time

requirement of application based on (2). getQosNode()

method further calls minimumQosNode() method that

selects one DataNode among the DataNodes returned by

setofQosCheckNode(). This selected DataNode

‘QoSNode’ has minimum replication time from requested

DataNode. This target DataNode ‘QoSNode’ is returned

by getQosNode() method to chooseRemoteRack() method.

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2748

If no one remote rack DataNode is satisfied the replication

time requirement of application based on (2), value of

‘QoSNode’ is null. If‘QoSNode’ is not null, it stored in

‘targetNodes’ by chooseRemoteRack() method otherwise,

getNotSatifiedNode() method is called by

chooseRemoteRack() method. This method is used to find

a targetDataNode which don’t satisfy the QoS replication
time requirement of application based on (2) but has

minimum replication time among all remote rack

DataNodes from requested DataNode. To finding target

DataNode getNotSatifiedNode() method in turn call

minReplicationTime() method to find unsatisfied

DataNode which has minimum replication time from

requested DataNode. The address of this minimum

replication time unsatisfied target DataNode is stored in

‘targetNode’.
As number of target DataNodes in ‘targetNode’ is

equal to ‘replicationFactor’, ‘targetNode’ is returned by

chooseTarget() method to getAdditionalBlock() method.

In this way, ‘targetNode’ contains address of target

DataNodes, where block ‘b’ of a file ‘src’ has to be stored.
Then target DataNodes organizes a pipeline and

DataStreamer streams the block to the first target

DataNode, second target DataNode and third target

DataNode one by one to write in the disk of target

DataNodes.

3) Algorithm of QoS-Aware Data Replica Placement

Policy:

QoS-aware data replica placement algorithm takes

‘src’, ‘replicationFactor’ ‘clientNode’, ‘blockSize’,
‘replicationTime’ as input. Output of this algorithm is the

‘result’, which holds the locations of target DataNodes
where block will be hosted. Selection of target DataNodes

is based on QoS-aware data replica placement mechanism.

Number of target DataNodes in ‘result’ is equal to the
‘replicationFactor’.

The variables used in ‘QoS-aware data replication in

HDFS’ algorithm are given in table 3.

TABLE 3

Variables used in Qos-Aware Data Replication

Algorithm

When the client sends QoS-aware write request of file

‘src’ to the NameNode for location of target DataNodes,

NameNode calls getAdditionalBlock() method to obtain

an additional block of the file ‘src’. The size of the block

is equal to ‘blocksize’. This method calls chooseTarget()
method which selects ‘replicationFactor’ number of target

Fig.7. The Qos-aware data replica placement

algorithm

DataNodes for placing the block of file ‘src'. The
selection of target DataNodes are based on QoS-aware

data replica placement strategy.

In QoS-aware data replica placement algorithm,

chooseTarget() method checks the result variable and finds

number of target DataNodes in ‘result’ variable. If ‘result’
variable doesn’t contain any location of DataNode, it calls

chooseLocalNode() method in step2. This method selects

the local DataNode as a target DataNode and stores

address of local DataNode in ‘result’ variable in step 3. If
number of target DataNodes in ‘result’ variable is less than

‘replicationFactor’, it calls chooseRemoteRack() method
in step 4 to selectall remote rack DataNode based on (1)

and stores it in the ‘remoteNode’ variable in step 4.1.

chooseRemoteRack() method which in turn calls

getQosNode() method in step 4.1.1. This getQosNode()

method takes ‘remoteNode’ as argument and calls
setOfQosCheckNode() method which selects DataNodes

among ‘remoteNode’which satisfy the replication time
requirement of application based on (2) and stores in

‘qosCheckNodes’ variable in step 4.1.1.a. After

successfully execution of setOfQosCheckNode() method,

getQosNode() method calls minimumQosNode() method

and passes ‘qosCheckNodes’ variable as an argument.

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2749

setOfQosCheckNode() method finds DataNode among

‘qosCheckNodes’ variable that has minimum replication
time from client DatatNodein step 4.1.1.b. Then it stores

the selected DataNode in ‘minQosNode’ variable.
‘minQosNode’ variable is returned by getQosNode()

method to chooseRandomNode() method. If remote rack

DataNodes doesn’t satisfy the replication time requirement
of application, null is returned to chooseRemoteRack()

method in step 4.1.1.c. If null is returned to

chooseRemoteRack() method, getNotSatifiedNode()

method is called. Otherwise ‘minQoSNode’ is stored in
‘result’ variable in step 4.1.4. getNotSatifiedNode()
method calls minReplicationtime() method to select a

DataNode among remote rack DataNodes which has

minimum replication time but doesn’t satisfy the (2) in
step 4.1.3.a and address of selected DataNode is stored in

‘result’ variable in step 4.1.3.b. chooseremoteRack()

method is called till number of target DataNodes in

‘result’ variable is equal to ‘replicationFactor’. If number
of target DataNodes in ‘result’ variable is equal to
‘replicationFactor’ variable, result is returned by

chooseTarget() method.

In this way, ‘targetNode’ contains address of target

DataNodes, where block ‘b’ of a file ‘src’ has to be stored.

Then target DataNodes organizes a pipeline and

DataStreamer streams the block to the first target

DataNode, second target DataNode and third target

DataNode one by one to write in the disk of target

DataNodes.

4) Example of QoS-Aware Data Replica Placement

Policy

Consider the same example given in fig. 5, in which

applications ‘A1’ ‘A2’ and ‘A3’ are executing on ‘D1’
‘D2’ and ‘D3’ respectively. Replication factor is also
three. Replication time requirement of application ‘A1’,
‘A2’ and ‘A3’ are 0.0520 ms, 0.0750 ms and 0.050 ms

respectively.

Replication time from each DataNode to each

DataNode is giventable 4. This replication time is

calculated by (3). Suppose ‘A1’ issues a QoS-aware write

request to NameNode. After receiving QoS-aware write

request, NameNode finds target DataNodes based on QoS-

aware data replica placement algorithm. First target

DataNode is ‘D1’ because ‘D1’ is local DataNode. After
that NameNode finds other DataNodes which satisfy the

replication time requirement of application. ‘D4’, ‘D5’ and
‘D6’ satisfy the replication time requirement of

application because these DataNodes are in different rack

as well as replication time of ‘D4’, ‘D5’ and ‘D6’ are

0.501 ms, 0.500 ms and 0.0490 ms respectively from the

‘D1’ client DataNode which is less than replication time

requirement of application i.e. 0.0520ms. But among these

three DataNodes, NameNode selects ‘D6’ DataNodes
because replication time of ‘D6’ DataNode from ‘D1’
requested DataNode is minimum. Similarly ‘D5’
DataNode is selected by NameNode. Hence, address of

‘D1’, ‘D5’ and ‘D6’ DataNodes are returned by

NameNode to ‘D1’ requested DataNode. The replication

cost of application ‘A1’ is 0.0365 ms +0.0500 ms +0.0490

ms i.e. 1.355 ms

Similarly, the application ‘A2’ and application ‘A3’
issue QoS-aware write request to NameNode. Replication

cost of application ‘A2’ and ‘A3’ are 1.825 ms and 1.410

ms respectively.

V. PERFORMANCE EVALUATION

We used Oracle Solaris Zone technology[18] to evaluate

the performance of the block replica placement strategy

and QoS-aware data replication strategy. Our simulation

environment has 2000 DataNodes and 101 racks.

A. Simulation Environment

Oracle Solaris Zones technology is used to configure

Hadoop Distributed File System on multiple DataNodes.

Oracle Solaris Zones technology follows the concept of

virtualize operating system services and provide an

isolated and secure environment for running independent

or dependent applications.A Zone is a virtualized

operating system environment which is created within a

single instance of the Oracle Solaris operating system. It

allows to create multiple isolated systems in single system.

These isolated system are secure from external attacks and

internal malicious programs. Oracle Solaris uses Zone File

System (ZFS) encryption concept in which all data and file

system metadata (such as ownership, access control lists,

quota information, and so on) is encrypted when it is

stored persistently in the ZFS pool. Each Oracle Solaris

Zone contains a complete resource-controlled environment

and it allows to allocate resources such as CPU, memory,

networking, and storage. In simulation environment,

NameNode, SecondaryNameNode and 2000 DataNodes

are created using this oracle Solaris Zone. These Nodes

are secure, isolated and complete resource-controlled

Nodes. It also provides scalable infrastructure which helps

to create new DataNodes.

Oracle Solaris also provides Network virtualization

with virtual NICs (VNICs), virtual switching and Network

resource management. In simulation environment, 101

racks are created using virtual switching. One rack is

specified as a central rack for connecting all the remaining

100 racks, in addition 20 DataNodes are connected to each

rack.

QoS-aware data replication strategy is implemented as

mentioned in part B of section IV by changing the source

code of HDFS. Moreover, open source IDE Eclipse is used

to change and rebuilt the source code of HDFS. Original

HDFS having block replication strategy and rebuilt HDFS

TABLE 4

Replication time between each DataNode in millisecond

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2750

having QoS-aware data replication strategy is installed in

simulation environment.

In simulation run, we randomly select a DataNodes to

execute applications, not all 2000 DataNodes. Application

generates a QoS-aware write request to NameNode to

write a block of data. NameNode handles this write

request. Disk storage time is calculated by tools like

hdparm/dd. Next, Communication time is calculated by

UDP programor ping command. QoS requirement of

application is set by randomly selecting a number from

0.050 to 0.0200.

B. Simulation Testing

QoS-aware Data Replica Placement strategy were

developed in Hadoop in such a way that data block is

replicated on DataNodes which satisfy the replication time

requirement of application. The existing algorithm ‘block
replica placement’ and modified algorithm ‘QoS-aware

data replica placement’ of Hadoop Distributed File System
(HDFS) were tested in Oracle Solaris Operating System.

This HDFS consists of NameNode, SecondaryNameNode

and 2000 DataNodes. Twenty DataNodes were deployed

with in each rack. Replication time requirement of

different application running on each DataNode is selected

randomly.

Different size of files were stored in HDFS for testing.

These files are selected in such a way that number of

blocks formed by these files were different. Number of

blocks formed by first file, second file, third file etc. was

one, two, three etc. respectively.

C. Simulation Result

This section presents the results of the testing done in

previous section.

Files were stored in Hadoop distributed file system

(HDFS). Replicas of block were placed which were based

on ‘Block replica placement algorithm’. In this algorithm
first block was stored on local DataNode, second and third

replicas were stored on random remote rack. Replication

time of first file was 0.1400 ms, second file was 0.3800

etc.

Similarly, replication of blocks were done by ‘QoS-

aware data replica placement algorithm’. In this algorithm
first block was stored on local DataNode, second and third

were stored on DataNodes which satisfy the replication

time requirement of application. Replication time of first

file was 0.1355 ms, second file was 0.3650 ms etc.

Replication time taken for placement of replicas based on

Block Replica Placement algorithm and QoS-aware data

replica placement algorithm for different files stored on

HDFS is shown in table 5.

Replication Cost of Block Replica Placement algorithm

was 8.9045 ms. Whereas, Replication Cost of QoS-aware

data replica placement algorithm was 7.7375 ms.

D. Analysis of Result

Graph is plotted between number of blocks of

different files stored in HDFS and replication time taken to

store these files. As shown in fig. 8, replication time to

store the block using ‘QoS-aware data replica algorithm’
is less as compared to ‘Block Replica Placement
algorithm’.

The placement of replica using QoS-aware replica

placement algorithm has less replication cost as compared

to block replica placement algorithm for approximate 3

GB size of files and 2000 DataNodes. The replication time

of larger files based on QoS-aware data replica placement

algorithm was improved as compared to block replica

placement algorithm as shown in fig. 8. Although storage

and number of DataNodes can rise up to petabytes of data

and millions of DataNodes. It will give significant result.

In block replica placement algorithm, the selection of

target remote DataNode is random. But, in QoS-aware

replica placement algorithm, the selection of target

DataNode is based on replication time requirement of

application. Block is replicated to remote DataNode which

satisfies the replication time requirement of application,

which reduces the replication cost of algorithm. Hence

QoS-aware data replica placement is better than block

replica placement algorithm.

VI. CONCLUSION
In QoS-aware Data Replication algorithm, first replica of

block was stored on local DataNode while second and

third replica were stored on DataNodes which satisfy the

replication time requirement of applications. This

Fig. 8. Graph of Block Replica Placement Algorithm vs. QoS-

Aware Data Replica Placement Algorithm

Table 5

Replication time of blocks based on ‘Block Replica Placement
Algorithm’ and ‘QoS-Aware Data Replica Placement Algorithm’

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 03 Pages: 2741-2751 (2015) ISSN: 0975-0290

2751

algorithm was tested on Oracle Solaris operating system

using Oracle Solaris Zones technology by storing different

size of files. The existing block replication algorithm was

compared with QoS-aware Data Replication algorithm. It

was observed that replication Cost of ‘Block Replica
Placement algorithm’ and ‘QoS-aware data replica

placement algorithm’ was 8.9045 ms and 7.7375 ms. The
replication cost of ‘QoS-aware Data Replica Placement

algorithm’ in HDFS minimizes the data replication cost

and improves system performance.

The QoS-aware Data Replication algorithm considers

‘replication time’ as QoS parameter. Other QoS parameter
like access time can also be considered for accessing the

data block.

In future, replication algorithms can be extended to

concern heat dissipation, power dissipation and

temperature of DataNodes. The number of DataNodes in

HDFS are large, hence consideration of energy parameter

for block placement will be significant. Blocks should be

replicated to DataNodes having low temperature and low

power consumption.

REFERENCES

[1] http://jehiah.cz/a/distributed-filesystems

[2] https://wiki.apache.org/hadoop/PoweredBy

[3] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,

Robert Chansler, ”The Hadoop Distributed File

System” , conference IEEE 2010.

[4] Apache, HDFS Overview,

http://hadoop.apache.org/hdfs/, 2010

[5] Apache, Hadoop Mapreduce,

http://hadoop.apache.org/mapreduce/docs/current/inde

x.html,2010

[6] T. White, Hadoop: The Definitive Guide, Second ed.,

Yahoo Press, 2010

[7] Aiqiang Gao and Luhong Diao, “Lazy Update

Propagation for Data Replication in Cloud

Computing”, 5th International Conference, Pervasive

Computing and Applications (ICPCA), pp. 250 – 254,

Dec. 2010

[8] Hadoop: The Definitive Guide.

[9] http://www.slideshare.net/cloudera/hadoop-world-

2011-hdfs-federation-suresh-srinivas-hortonworks

[10] Apache Zookeeper.

http://hadoop.apache.org/zookeeper/

[11] F. Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li,

“Hadoop High Availability through Metadata

Replication,” Proc. First Int’l Workshop Cloud Data
Manage, pp. 37-44, 2009.

[12] QoS-Aware Replica Placement for Content

Distribution Xueyan Tang, Member, IEEE, and

Jianliang Xu, Member, IEEE

[13] H. Wang, P. Liu, and J.-J. Wu, “A QoS-Aware

Heuristic Algorithm for Replica Placement,” Proc.
IEEE/ACM Seventh Int’l Conf. Grid Computing, pp.
96-103, Sept. 2006.

[14] A.M. Soosai, A. Abdullah, M. Othman, R. Latip,

M.N. Sulaiman, and H. Ibrahim, “Dynamic Replica
Replacement Strategy in Data Grid,” Proc. Eighth
Int’l Conf. Computing Technology and Information

Management (ICCM), pp. 578-584, Apr. 2012.

[15] X. Fu, R. Wang, Y. Wang, and S. Deng, “A Replica
Placement Algorithm in Mobile Grid Environments,”
Proc. Int’l Conf. Embedded Software and Systems
(ICESS ’09), pp. 601-606, May 2009.

[16] M. Shorfuzzaman, P. Graham, and R. Eskicioglu,

“QoS-Aware Distributed Replica Placement in

Hierarchical Data Grids,” Proc. IEEE Int’l Conf.
Advanced Information Networking and Applications,

pp. 291-299, Mar. 2011.

[17] Apache Hadoop. [Online] [2014].

Available:

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.ht

ml

[18] Oracle Solaris Documentation [Online]

Available: http:// http://www.oracle.com

	References

